Thursday, October 29, 2009

Represented Conflict











 < Day Day Up > 











Represented Conflict


We are beginning to understand how procedural representations work to simulate phenomena through dynamic depictions. But there is a question that precedes a discussion of how games create such representations. It is the question of what phenomena a dynamic system can depict. Can a game designer pick anything to simulate, or are there inherent limitations? Are there certain things that games are predisposed to simulate, certain subjects that lend themselves naturally to games? Game designer Warren Robinett seems to think that just about anything might be simulated:



Many provocatively complex phenomena await interpretation …trains and other vehicles which move cargo through spaces, kayaks in swirling river currents, planets orbiting their stars, competing creatures in evolving ecologies, visible melodies smeared upon harmonic wallpaper, looping programs in throbbing execution, and human thought darting across a tangled network of knowledge....


The real world offers a vast set of phenomena to simulate—animals behaving, plants growing, structures buckling, traffic jamming, snowflakes forming. Any process is a candidate. Every verb in the dictionary suggests an idea.[3]



Since Robinett originally penned this challenge, games have been designed to simulate some of the phenomena he describes: Sim Life attempted to simulate evolving ecologies of creatures; the shareware game Bridge Builder simulates structures buckling under the weight of a train. However, many of the phenomena on his list are still waiting to find themselves in games. As Robinett points out, "every verb in the dictionary suggests an idea" for a simulation. Why then, do games seem to focus on a narrow range of processes to simulate? Why do we see the same genres of games over and over: fighting, racing, war, sports, and so on? Of course, economic and business concerns greatly influence game content. But is there something else, something deeper about the underlying structure of games that determines the kinds of processes they can and cannot depict?


Our definition of a game describes them as systems in which players engage in an artificial conflict, defined by rules, that results in a quantifiable outcome. The part of the definition relevant to our present discussion of simulation and representation is conflict. Games are contests of power: they are systems of conflict. Conflict is not only a product of the game's rules, but of its system of representation as well. Every game, on some level, dynamically represents conflict. The elements of a game—the players, the pieces, the rules—all have a role in generating the representation. The insight that games represent conflict through a dynamic process might help to explain the prevalence of certain content in games: perhaps some forms of conflict are simply easier to model than others. At the same time, understanding the kinds of conflict that games most often depict also helps us to strategize new kinds of subjects for games to simulate.


What are the forms of conflict we find dynamically represented in games? If the game has a strong narrative component, the conflict is easy to spot. The Lord of the Rings Board Game clearly simulates the struggle of the players, as the Fellowship hobbits, to reach Mount Doom at Mordor and destroy the One Ring. But in many games, it is more difficult to pin down the simulated conflict. What is the conflict in Baseball, Checkers, or Jeopardy? The key to comprehending the form of conflict simulated by a game is to figure out what is being contested. In what kind of arena is the conflict being held? Over what is the conflict being waged? How is the progress of the conflict measured? What aspects of the conflict are dynamically represented?


In order to answer these questions we distill the range of game conflict into three general categories: territorial conflict, economic conflict, and conflict over knowledge. These three categories are neither discrete nor mutually exclusive: many games incorporate two or all three of them at once within their design. Rather than a strict typology, they are instead conceptual frames for looking at the kinds of conflict that games can dynamically represent. Next, we explore each of these three categories in more detail.




Conflict Over Territory


Conflict over territory is perhaps the most intuitive of the three categories. Board games such as Chess, in which pieces are moved on a limited playing field, are a common game of this sort. In games of territorial conflict, players strategically position their units to capture enemies and gain ground. Conflicts of this kind are abstract representations of war: the pieces depict military units, and the play area dynamically represents the territory over which the battle is waged.


Go is another good example of a game focused on capturing territory. As players lay down their stones, their primary goal is to surround areas of the playfield to secure the captured space. At the end of the game, each player receives a point for each grid intersection secured (plus a point for each captured enemy piece).The game originated as a military simulation—in feudal Japan, Go was considered a martial art. As a territorial conflict, Go is a strikingly elegant representation.


There are many other games that simulate the process of territorial conflict. Tic-Tac-Toe is a simple territorial conflict where players attempt to strategically occupy territory in a pattern that will lead to victory. Ball-based sports such as Football and Soccer entail moving a team or a special marker across a stretch of terrain into the opponent's end zone or goal: the enemy invaded. Tabletop games such as Warhammer offer incredibly complex representations of warfare dynamically enacted, with dozens of different kinds of units, large detailed maps, and thick rulebooks controlling the particulars of interaction. The U.S. military uses even more complex war games as training exercises, in which hundreds or even thousands of troops play vast games of laser tag in real and simulated environments.



Economic Conflict


Economic conflict is another common form of conflict in games. Within simulations of economic conflict, it is not terrain that is contested, but a unit of value.The word "economic" does not necessarily refer to money, but to any collection of pieces, parts, points, cards, or other items that form a system through which the conflict takes place. In a pinball game, you are trying to rack up a high score. In Magic: The Gathering, you are trying to reduce your oppo-nent's life to zero. In these game economies, the rules give each unit a value, and progress through the game is measured according to the values assigned by this economy.


An economy in a game is generally a limited economy. This means that the units that make up the economy are finite, and usually the players know the composition of the economy. In Poker, it is crucial that all players understand the limited economy of a deck of playing cards. Knowledge about which cards appear in the deck allows them to understand which hands are more difficult to build. Four-of-a-kind is harder to build than a pair; a straight flush harder still. The other economy of Poker—the betting money—might or might not be a limited economy. Each player might start with the same amount of chips, in which case all players know the parameters of the chip economy. If players can use money in their pockets or other valuables for betting, the players don't know the full extent of the economy—although the economy is ultimately limited by the capital each player possesses outside the magic circle. On the other hand, if players are not betting "real money" but are instead playing for fun using an endless supply of chips, the normally limited betting economy becomes unlimited.


Because economic conflict is generally reducible to numbers and points, and games are intrinsically mathematical, we can frame almost any game in this way. For example, a race game, in which players roll a die and move a marker down a track, might at first seem to be a territorial conflict.


However, the same game could also be played by throwing dice and adding up the points that players receive each turn, making the game more of an economic conflict. Since the two games would have similar constituative rules, the operational rules would help determine what kind of conflict the game represents. Yet some games combine categories: Is Quake a territorial conflict or an economic one? It is clearly a hybrid. The play takes place within the representation of a space, in which relative position at each moment is quite important. However, much of the game consists of managing economies of resources such as health, armor, ammo, weapons, and kills.


Even the strongly territorial games of Chess and Go can be seen as procedural representations of economic conflict. In Chess, the pieces represent an economy, and the use-value of each piece is derived from the total set of relationships on the board. Of course, one unit—the King— has a special value, which determines the winner of the game. Similarly, at the end of a game of Go, territory is translated into points, and as with the race game example, Go could be interpreted as an economy—of contested points. Remember that the three kinds of conflict are not hard and fast categories; they are merely frames we use to understand the kinds of conflict that games traditionally simulate.



Conflict Over Knowledge


Conflict over knowledge offers a different model for understanding the way games simulate conflict. In Trivial Pursuit, for example, it is true that pieces move about on the spatial territory of a board. It is also true that the players acquire a set of colored plastic pieces within an economy of parts in order to win the game. But these ways of framing Trivial Pursuit seem to leave out the key component of the game conflict: the process of asking and answering trivia questions.


In Trivial Pursuit, as with many other games in which information itself forms the arena of conflict, the contested "terrain" of the game is knowledge. Game shows such as Hollywood Squares, computer trivia games such as You Don't Know Jack, and even games about translation of information from one form to another such as Charades, can all be understood as games in which the conflict is one of knowledge. Conflicts over knowledge are inherently cultural, because the game conflict itself engages with a cultural space that lies outside the game. In a game of conflict over knowledge, the outcome of a game action is dependent on whether or not the player knows the right answer to a question of some kind. This is quite different than representation of territorial or economic conflict: the process being simulated is the conflict of acquiring and sharing cultural knowledge. Games designed with factual knowledge as part of the system of conflict cross over the border of the magic circle, creating a game contingent on information brought into the game from external sources.



Games represent conflict as acquisition of and contestation over territory, economy, and knowledge. These three rather abstract categories don't tell us exactly what games are capable of simulating, but describe the general sorts of processes that games most often simulate. Identifying these three categories also helps explain why we see the same kinds of conflict being modeled over and over in games. For example, why is it that video games often seem to focus on simulating military conflict: fighting, shooting, and conquering? Or that so many games overflow with collectable item economies: magic coins, money, or other precious objects? Like it or not, the tendency toward military and economic representation in games has a long history, directly linked to the processes of territorial and economic conflict intrinsic to most games.


There is a relatively clear line of descent, for example, from Go and Chess to Kriegspiel, wargaming miniatures, and role-play-ing games, and from these non-digital games to today's RPGs,


FPSs, and RTSs (role-playing games, first-person shooters, and real-time strategy games). A tremendous amount of design thinking regarding wargaming, military simulation, and other forms of territorial conflict has accumulated over the centuries. Simulating the difference between mounted units and infantry units; between melee and ranged weapons; between attacks that spread damage and attacks that penetrate; between size and maneuverability, strength and speed, and so on, have become well-worn design problems of game representation over the years. In this sense, today's highly detailed military games are the inheritors of millennia of design thinking.


Happily, this long history in no way limits what it is possible to simulate in games, even when it comes to forms of conflict. An important question for today's game designer is: What other kinds of conflict can games simulate? For example, what about Robinett's wish list? How could a game be designed to simulate social conflict, psychological conflict, or interpersonal conflict? These are truly tough design challenges. As we will see in the following pages, part of the challenge lies in the fact that simulations require radical simplification and stylization. Sid Meier's Civilization series are wonderful strategy games that tackle the Herculean task of simulating cultural development. But because cultural knowledge in the game is necessarily stylized into abstract units ("Do you trade Monotheism for Iron Working?") the game never comes close to representing the subtlety of its subject matter.


The history of games contains many robust examples for simulating military and economic conflict. A design lexicon for simulating social or cultural conflict may take generations to develop. Of course, these unsolved challenges are part of what makes game design as a field so remarkable. Despite the fact that games are a truly ancient phenomenon, there are still countless avenues for representational innovation—as long as you are ready to question long-standing assumptions about what games are and what they can be.







[3]Warren Robinett, Inventing the Adventure Game, unpublished manuscript.



















 < Day Day Up > 



No comments:

Post a Comment