< Free Open Study > |
8.5. Barricade Your Program to Contain the Damage Caused by ErrorsBarricades are a damage-containment strategy. The reason is similar to that for having isolated compartments in the hull of a ship. If the ship runs into an iceberg and pops open the hull, that compartment is shut off and the rest of the ship isn't affected. They are also similar to firewalls in a building. A building's firewalls prevent fire from spreading from one part of a building to another part. (Barricades used to be called "firewalls," but the term "firewall" now commonly refers to blocking hostile network traffic.) One way to barricade for defensive programming purposes is to designate certain interfaces as boundaries to "safe" areas. Check data crossing the boundaries of a safe area for validity, and respond sensibly if the data isn't valid. Figure 8-2 illustrates this concept. Figure 8-2. Defining some parts of the software that work with dirty data and some that work with clean data can be an effective way to relieve the majority of the code of the responsibility for checking for bad data[View full size image] This same approach can be used at the class level. The class's public methods assume the data is unsafe, and they are responsible for checking the data and sanitizing it. Once the data has been accepted by the class's public methods, the class's private methods can assume the data is safe. Another way of thinking about this approach is as an operating-room technique. Data is sterilized before it's allowed to enter the operating room. Anything that's in the operating room is assumed to be safe. The key design decision is deciding what to put in the operating room, what to keep out, and where to put the doors�which routines are considered to be inside the safety zone, which are outside, and which sanitize the data. The easiest way to do this is usually by sanitizing external data as it arrives, but data often needs to be sanitized at more than one level, so multiple levels of sterilization are sometimes required. Convert input data to the proper type at input time Input typically arrives in the form of a string or number. Sometimes the value will map onto a boolean type like "yes" or "no." Sometimes the value will map onto an enumerated type like Color_Red, Color_Green, and Color_Blue. Carrying data of questionable type for any length of time in a program increases complexity and increases the chance that someone can crash your program by inputting a color like "Yes." Convert input data to the proper form as soon as possible after it's input. Relationship Between Barricades and AssertionsThe use of barricades makes the distinction between assertions and error handling clean-cut. Routines that are outside the barricade should use error handling because it isn't safe to make any assumptions about the data. Routines inside the barricade should use assertions, because the data passed to them is supposed to be sanitized before it's passed across the barricade. If one of the routines inside the barricade detects bad data, that's an error in the program rather than an error in the data. The use of barricades also illustrates the value of deciding at the architectural level how to handle errors. Deciding which code is inside and which is outside the barricade is an architecture-level decision. |
< Free Open Study > |
No comments:
Post a Comment